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Effects of 1a,25(OH)2D3 and Its Analogs on
Dendritic Cell Function
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Abstract 1a,25-Dihydroxyvitamin D3 (1a,25(OH)2D3) and non-calcemic vitamin D analogs induce a persistent
state of immaturity in dendritic cells both in vitro and in vivo. These effects are transcriptional in nature, involve alterations
in surface ligands as well as cytokine synthesis and release, and are dependent upon the presence of the vitamin D
receptor. The vitamin D endocrine system could also play a role in altering immune function in normal physiological
conditions. Distinct differences exist in lymph node dendritic cells of vitamin D receptor null mutant mice when compared
to normal mice. J. Cell. Biochem. 88: 323–326, 2003. � 2002 Wiley-Liss, Inc.
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1a,25-Dihydroxyvitamin D3 (1a,25(OH)2D3)
plays an important role in the maintenance of
calcium and phosphorus homeostasis [Kumar
and Craig, 1997; Jones et al., 1998]. The effects
of vitamin D in the intestine, as well as in
bone, have been extensively studied in the past
[Kumar and Craig, 1997; Jones et al., 1998;
Gurlek and Kumar, 2001; Gurlek et al., 2002].
The mechanisms underlying many of these
functions have also been delineated.

ROLE OF 1a,25(OH)2D3 IN MODULATION
OF IMMUNE FUNCTION

1a,25(OH)2D3 has also been shown to play an
important role in the modulation of immune
function [Lemire, 1992; Mathieu and Adorini,
2002]. For example, 1a,25(OH)2D3 has been

shown to inhibit T-cell activation and to in-
hibit or stimulate various T-cell subtypes
[Lemire et al., 1985, 1995]. 1a,25(OH)2D3

also attenuates T-cell-mediated disease acti-
vity in experimental allergic encephalomye-
litis [Lemire and Archer, 1991; Cantorna
et al., 1996], collagen-induced arthritis [Can-
torna et al., 1998], autoimmune thyroiditis
[Fournier et al., 1990], hereditary diabetes
[Mathieu et al., 1992; Adorini et al., 2002;
Gregori et al., 2002], Heymann nephritis
[Branisteanu et al., 1993], and transplant rejec-
tion [Veyron et al., 1993; Hullett et al., 1998].

DENDRITIC CELL FUNCTION AND
THE REGULATION OF IMMUNE RESPONSE

The activation of T-cells by antigen present-
ing cells is an important mechanism by which
immune function is modulated [Banchereau
and Steinman, 1998; Palucka and Banchereau,
1999; Steinman, 1999]. Dendritic cells are a
class of antigen presenting cells that potently
stimulate CD4 (helper) T-cells and CD8 (cyto-
lytic) T-cells. Small numbers of dendritic cells
pulsed with low doses of antigen stimulate
strong T-cell responses in naı̈ve and quiescent
T-cells. Immaturedendritic cells,however,have
weak in vitro immunostimulatory power and do
not bring about potent immune sensitization
in vivo (Table I). Hence, agents that maintain
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dendritic cells in an immature state could be
of use in the treatment of various immune
diseases and in the prevention of rejection
following transplantation.

EFFECT OF VITAMIN D ANALOGS ON
DENDRITIC CELL FUNCTION

We examined the effects of 1a,25(OH)2D3 and
a potent vitamin D analog (1a,25(OH)2 19-ene,
23-yne, 19-nor-vitamin D3) on dendritic cell
function in vitro and in vivo [Griffin et al., 2000,
2001]. Our observations are consistent with
those reported by other groups [Zhou et al.,
1991; Wali et al., 1995; Pirro et al., 1997; Penna
andAdorini, 2000].We showed that theaddition
of a vitamin D analog to in vitro derived mouse
dendritic cells resulted in a state of immaturity
in these cells with low-level expression of cell
surface markers of maturation [Griffin et al.,
2000, 2001]. The yield of dendritic cells in
culture was not significantly affected except
at the highest doses of vitamin D analog used.
The surface levels of both MHC II and co-
stimulatory ligands in dendritic cells cultured
from murine bone marrow in the presence of
1a,25(OH)2D3, or the related analog, were low,
showing that these analogs caused a reduction
in multiple markers of mature dendritic cells.
We showed that the effect on combined surface
levels of co-stimulatory molecules was depen-
dent upon the presence of vitamin D receptor
since vitaminD receptor null mutant (knockout
(KO)) mice showed no such inhibition of cell
surface marker expression. We also showed
that vitamin D analog-treated dendritic cells
failed to potently stimulate T-cell division in
co-culture experiments. Thus, there is strong
evidence showing that potent vitaminDanalogs

inhibit dendritic cellmaturation and function in
cell culture models.

In further experiments, we showed that
vitamin D treatment of dendritic cells inhi-
bited increases in surface markers of matu-
ration following treatment of dendritic cells
with macrophage conditioned medium or lipo-
polysaccharide [Griffin et al., 2001]. We also
demonstrated that dendritic cells secreted sig-
nificantly less IL12 following treatment with
vitamin D analog. TGFb1 levels, however, did
not change significantly.

In order to assess the effects of 1a,25(OH)2D3

and vitaminDanalogs on dendritic cell function
in vivo, we treated female mice with cultured
male dendritic cells that had been exposed
either to vitamin D analog or to vehicle [Griffin
et al., 2001]. The ability to remove labeled male
splenocytes from the circulation was tested in
groups of animals that had either been pre-
treated with vitamin D analog-DCs or vehicle-
DCs and compared to non-pre-treated groups.
As can be seen in Figure 1A, pretreatment with
vehicle DCs resulted in accelerated clearance of
infusedmale splenocytes in femalemice in vivo,
whereas pre-treatment with vitamin D analog-
DCs did not. Furthermore, when transplanta-
tion of male skin was subsequently carried out,
it was found that pre-treatment with vitamin D
analog-DCs resulted in significantly prolonged
graft survival compared to animals receiving no
pre-treatment (Fig. 1B).

To determine whether lack of vitamin D
receptor influences dendritic cell physiology in
vivo, we examined subcutaneous lymph nodes
from wild type (WT) or vitamin D receptor KO
mice. As seen in Figure 2, the lymph nodes from
vitamin D receptor KO mice were larger than
those from WT animals. Analysis of lymph
node cells from WT or vitamin D receptor KO
mice showed that the proportion of highly
mature dendritic cells in lymph nodes was
higher in the KO animals than in the WT
animals. Lymph node dendritic cells from KO
animals had higher cell surface levels of the
maturation markers MHC II, CD40, CD80/
CD86 than did dendritic cells of KO animals
[Griffin et al., 2001]. Similar effects were not
noted in the spleen.

CONCLUSIONS

Vitamin D induces a state of dendritic cell
immaturity in vitro and in vivo. The vitamin D

TABLE 1. Characteristics of Immature and
Mature Dendritic Cells

Immature DC Mature DC

High intracellular MHCII
(MIICs)

High surface MHCII

Endocytosis, including FcR Low endocytosis and FcR
Low CD54, 58, 80, 86 High CD54, 58, 80, 86
Low CD40, CD25, IL-12 High CD40, CD25, IL-12
Low CD83, p55 High CD83, p55
Low granule antigens High M342, 2A1, MIDC-8

antigens
Actin cables No actin cables

Modified from Banchereau and Steinman [1998].
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receptor appears to be essential for the effects of
vitamin D analogs on dendritic cell function.
VitaminD receptor KOmice have enlarged sub-
cutaneous lymph nodes and changes in den-
dritic cell maturation consistent with changes
observed following addition of vitamin D meta-
bolites in dendritic cell cultures. Potent non-
calcemic vitamin analogs should find use in

altering immune function in a number of clini-
cally important situations.
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